Frenzy among theorists
Since December 15, I have counted 200 new theoretical papers, each one suggesting one or several possible explanations for a new particle not yet discovered. This flurry of activity started when the CMS and ATLAS Collaborations both reported having found a few events that could possibly reveal the presence of a new particle decaying to two photons. Its mass would be around 750 GeV, that is, five times the mass of the Higgs boson.
No one knows yet if all this excitement is granted but it clearly illustrates how much physicists are hoping for a huge discovery in the coming years. Will it be like with the Higgs boson, which was officially discovered in July 2012 but had already given some faint signs of its presence a year earlier? Right now, there is not enough data. And just as I wrote in July 2011, it is as if we were trying to guess if the train is coming by looking in the far distance on a grey winter day. Only time will tell if the indistinct shape barely visible above the horizon is the long awaited train or just an illusion. But until more data become available, everybody will keep their eyes on that spot.
Due to the difficulties inherent to the restart of the LHC at higher energy, the amount of data collected at 13 TeV in 2015 by ATLAS and CMS was very limited. Given that small data samples are always prone to large statistical fluctuations, the experimentalists exerted much caution when they presented these results, clearly stating that any claim was premature.
But theorists, who have been craving for signs of something new for decades, jumped on it. Within a single month, including the end-of-the-year holiday period, 170 theoretical papers were published to suggest just as many possible different interpretations for this yet undiscovered new particle.
No new data will come for a few more months due to annual maintenance. The Large Hadron Collider is due to restart on March 21 and should deliver the first collisions to the experiments around April 18. The hope is to collect a data sample of 30 fb-1 in 2016, to be compared with about 4 fb-1 in 2015. Later this summer, when more data will be available, we will know if this new particle exists or not.
This possibility is however extremely exciting since the Standard Model of particle physics is now complete. All expected particles have been found. But since this model leaves many open questions, theorists are convinced that there ought to be a more encompassing theory. Hence, discovering a new particle or measuring anything with a value different from its predicted value would reveal at long last what the new physics beyond the Standard Model could be.
No one knows yet what form this new physics will take. This is why so many different theoretical explanations have been proposed for this possible new particle. I have compiled some of them in the table below. Many of these papers described the properties needed by a new boson to fit the actual data. The solutions proposed are incredibly diversified, the most recurrent ones being various versions of dark matter or supersymmetric, new gauge symmetries, Hidden Valley, Grand Unified Theory, extra or composite Higgs bosons and extra dimensions. There enough to suit every taste: axizillas, dilatons, dark pion cousins of a G-parity odd WIMP, one-family walking technipion or trinification.
It is therefore crystal clear: it could be anything or nothing at all… But every time accelerators have gone up in energy, new discoveries have been made. So we could be in for a hot summer.
Pauline Gagnon
To learn more on particle physics, don’t miss my book, which will come out in English in July.
To be alerted of new postings, follow me on Twitter: @GagnonPauline or sign-up on this mailing list to receive an e-mail notification.
A partial summary of the number of papers published so far with the type of solutions they proposed to explain the nature of the new particle, if new particle there is. Just about all known theoretical models can be adapted to produce a new particle with characteristics compatible with the few events observed. This is just indicative and by no means, strictly exact since many proposals were rather hard to categorize. Will one of these ideas be the right one?